On Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization

نویسندگان

  • Tinkle Chugh
  • Karthik Sindhya
  • Kaisa Miettinen
  • Jussi Hakanen
  • Yaochu Jin
چکیده

Surrogate-assisted evolutionary multiobjective optimization algorithms are often used to solve computationally expensive problems. But their efficacy on handling constrained optimization problems having more than three objectives has not been widely studied. Particularly the issue of how feasible and infeasible solutions are handled in generating a data set for training a surrogate has not received much attention. In this paper, we use a recently proposed Kriging-assisted evolutionary algorithm for many-objective optimization and investigate the effect of infeasible solutions on the performance of the surrogates. We assume that constraint functions are computationally inexpensive and consider different ways of handling feasible and infeasible solutions for training the surrogate and examine them on different benchmark problems. Results on the comparison with a reference vector guided evolutionary algorithm show that it is vital for the success of the surrogate to properly deal with infeasible solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local SVM Constraint Surrogate Models for Self-adaptive Evolution Strategies

In many applications of constrained continuous black box optimization, the evaluation of fitness and feasibility is expensive. Hence, the objective of reducing the constraint function calls remains a challenging research topic. In the past, various surrogate models have been proposed to solve this issue. In this paper, a local surrogate model of feasibility for a self-adaptive evolution strateg...

متن کامل

A Bi-objective Constrained Optimization Methodology Using a Hybrid Multi-Objective and Penalty Function Approach

Single objective evolutionary constrained optimization has been widely searched and researched by plethora of researchers in last two decades. On the other hand, multi-objective constraint handling using evolutionary algorithms has not been actively proposed. However, real-world multi-objective optimization problems consist of one or many non-linear and non-convex constraints. In the present wo...

متن کامل

Surrogate-assisted evolutionary computation: Recent advances and future challenges

Surrogate-assisted, or meta-model based evolutionary computation uses efficient computational models, often known as surrogates or meta-models, for approximating the fitness function in evolutionary algorithms. Research on surrogate-assisted evolutionary computation began over a decade ago and has received considerably increasing interest in recent years. Very interestingly, surrogate-assisted ...

متن کامل

Exploiting the Marginal Profits of Constraints with Evolutionary Multi-Objective Optimization Techniques

Many real-world search and optimization problems naturally involve constraint handling. Recently, quite a few heuristic methods were proposed to solve the nonlinear constrained optimization problems. However, the constraint-handling approaches in these methods have some drawbacks. In this paper, we gave a Multiobjective optimization problem based (MOP-based) formula for constrained single-objec...

متن کامل

Constrained Multi-Objective Optimization Algorithm with Ensemble of Constraint Handling Methods

Different constraint handling techniques have been used with multiobjective evolutionary algorithms (MOEA) to solve constrained multiobjective optimization problems. It is impossible for a single constraint handling technique to outperform all other constraint handling techniques always on every problem irrespective of the exhaustiveness of parameter tuning. To overcome this selection problem, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016